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bstract

The aim of the study was to investigate the potential of acoustic monitoring of a production scale fluidized bed coating process. The correlation
etween sensor signals and the estimated amount of film applied and percentage release, respectively, were investigated in coating potassium
hloride (KCl) crystals with ethylcellulose (EC). Vibrations were measured with two different types of accelerometers. Different positions for
lacing the accelerometers and two different product containers were included in the study. Top spray coating of KCl was chosen as a ‘worst case’
cenario from a coating point perspective. The acoustic monitoring has the potential of summarising the commonly used means to monitor the
oating process. The best partial least squares (PLS) regressions, obtained by the high frequency accelerometer, showed for the release a correlation
oefficient of 0.92 and a root mean square error of prediction (RMSEP) of 5.84% (31–82.8%), and for the estimated amount of film applied a

orrelation coefficient of 0.95 and RMSEP of 0.52% (0.6–6%). The results of the preliminary investigation are considered promising. There is
owever a need for further investigations on sampling procedures and product characterisation before a final conclusion on the applicability of
coustic monitoring can be made.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Cost-effectiveness of pharmaceutical manufacturing has
ecome an important factor for the success of a drug product.
hile the costs in most other industries have been significantly

educed in recent years, there are strong indications that costs
n pharmaceutical manufacturing have increased for a variety of
easons. FDA’s PAT initiative and the new ICH guidelines Q8
nd Q9 are associated with the design of robust manufacturing
rocesses being built on a mechanistic understanding of the pro-
esses and aiming at real-time release. Such efforts are likely to

ontribute to an improved cost-effectiveness because of reduced
aste and need for re-working. A range of process analytical

echniques have been proposed for process monitoring. Spec-

∗ Corresponding author. Tel.: +45 46 77 12 81; fax: +45 46 77 12 95.
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roscopic methods such as NIR and Raman spectroscopy have
n particular been implemented. A disadvantage of new moni-
oring techniques is that the resulting models for the correlation
etween sensor signals and quality parameters generally are case
pecific and must be developed for each application (Boyd and
arley, 2001).

Acoustic emission (AE) monitoring techniques in the form
f either active or passive acoustic emission (PAE) are used
ntensively by material scientists (Tönshoff et al., 2000), in
he oil and gas industry (Folkestad and Mylvaganam, 1990)
nd in monitoring chemical reactions (Betteridge et al., 1981;
elchamber et al., 1986; Wentzell and Wade, 1989). The fact

hat temporal and spatial changes are sources of AE opens up a
lethora of possibilities for in-line monitoring of processes by

he use of PAE signals. Recent publications on the application
f AE show that they lead to reliable quantitative results and do
ot function just as qualitative indicators. In powder processing
E sensing techniques have been applied to the monitoring

mailto:pbe@nycomed.com
dx.doi.org/10.1016/j.ijpharm.2006.09.036
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f powder compaction processes (Hakanen and Laine, 1993,
995; Salonen et al., 1997), for monitoring changes in physical
roperties of powder material during granulation (Whitaker et
l., 2000). Correlation between the degree of powder comminu-
ion and acoustic signals during pneumatic transportation has
een reported by Huang et al. (2003). Tsujimoto et al. (2000)
pplied an AE sensor to monitor the fluidisation conditions
n a fluidised bed granulator and concluded that the AE mea-
uring technique presented was highly feasible as a practical
ethod for monitoring particle fluidisation in a gas–solid
uidised bed.

The sounds generated by the friction, collisions and fluid tur-
ulence in powder processing include audible sounds detectable
ia air by a microphone as well as high frequency sounds in the
on-audible range – elastic waves – detectable by AE sensors
hat incorporate piezoelectric transducers. Particle behaviour
an be monitored and characterised by assessing the sounds,
nce the correlation between particular sounds and particle
otion is established (Tsujimoto et al., 2000). Tsujimoto et

l. (2000) describes three basic sources of PAE’s in fluidised
eds: (i) particle–particle or particle–chamber collision (impact
ounds), (ii) particle–particle or particle–chamber friction (fric-
ion sound) and (iii) air turbulence in particle bed (aerodynamic
ound).

The advantage of acoustic monitoring techniques compared
o other techniques is the non-invasive and non-destructive char-
cter. It is inexpensive, safe intrinsically and no window is
equired, which should give an advantage over NIR, which has
een used for in-process and at-line monitoring of the film coat-
ng process (Kirsch and Drennen, 1996; Andersson et al., 1999,
000). However, to the best of our knowledge no studies have
een published on the use of acoustics to control a pharmaceu-
ically relevant fluid bed-based coating process.

The commonly used means to monitor and control pharma-
eutical coating processes are records of liquid addition rate
nd atomizer air pressure as an indirect control of the air to
iquid mass ratio, inlet air temperature and humidity and out-
et air temperature and humidity. These variables are monitored
y sensors placed outside the product container and may possi-
ly form the basis for an automated control loop (Larsen et al.,
003). However, these instrumentations cannot directly moni-
or spray drying and agglomeration, which are crucial for the

uality of microencapsulated products.

Of the different coating techniques available the top spray
oating process is often considered as being the most difficult
o control when the objective is the achievement of a modi-

2
s
o
l

able 1
verview of different product containers, sensor types and their position

ensor Type Position

High frequencya Product container
Standardb Product container
Standard Product container
High frequency Expansion chamber

ensors 1–3, positions in cm from the bottom of product container. Sensor 4, position
a Endevco 7240C, sensitivity of 0.2647 pC/ms−2 and upper frequency at 50 kHz.
b Brüel and Kjær 4393, sensitivity of 0.2922 pC/ms−2 and upper frequency at 16.5
of Pharmaceutics 332 (2007) 90–97 91

ed release control (Jones, 1994). Several authors (Mehta and
ones, 1985; Mehta et al., 1986; Holm et al., 1991; Bertelsen et
l., 1994) have reported that top spray results in lower degree
f release retardation than bottom spraying. Mehta and Jones
1985) and Bertelsen et al. (1994) ascribed this difference pri-
arily to a difference in porosity of the membrane. In the top

pray-based process the product flow in the apparatus is some-
hat arbitrary because of the bubbling fluidization what means

hat the coating zone is not fully controlled and this is causing
elatively high variability. Therefore, the need of a method for
onitoring the quality of the applied coat is most needed for the

op spray-based coating process.
The present study was conducted to assess the potential of

AE for additional control of a fluidized bed coating process to
chieve a controlled release product. Potassium chloride crystals
ere coated in a top spray production scale coater with EC using

n organic-based coating solution. Along with the establishment
f an acoustic-based in-line process it was attempted to corre-
ate the processed signals to the essential product attributes, the
mount of film applied and its uniformity and barrier proper-
ies as mirrored by release of potassium chloride. The estimated
mount of film applied and the 6 h value for the release of potas-
ium chloride were employed in the analysis.

. Materials and methods

.1. Materials

KCl crystals (Klinge Chemicals Ltd., UK) with a mean par-
icle diameter less than 1000 �m were used for the microencap-
ulation process. The organic-based coating solution was com-
osed of EC (Dow Chemical, USA), isopropyl alcohol (Shell
hemicals, Belgium), acetyltributyl citrate (Croda, UK), hard
araffin (Schümann Sasol, Germany) and colloidal anhydrous
ilica (Degussa, Germany).

.2. Methods

.2.1. Fluid bed coater
The coating of potassium chloride crystals with EC was per-
00 (Glatt GmbH, Germany), equipped with top spray. Batch
ize 300 kg. Two different product containers were used, length
f the product container wall was 65 cm and the height of the
oad 34 cm.

Batches A1 and A2 (cm) Batches B1 and B2

44 43
49 12
52.5 53
15.5 15.5

in cm from the bottom of the expansion chamber.

kHz.
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.2.2. Set-up of trials
Four batches were produced by use of two different prod-

ct containers, A and B (Table 1). Each new batch was loaded
nto a product container outside the fluidised bed. Thereafter it
eplaced the container from the previous batch process. Duration
f one batch process was 10 h. Samples for in vitro dissolution
ests were drawn from the fluid bed coater each hour, result-
ng in 10 samples per batch, each consisting of approximately
00 g coated potassium chloride with different amounts of coat-
ng applied.

.2.3. Accelerometers
Two different types of accelerometers were used to measure

he vibrations from the process equipment in this study: Endevco
240C which is a high frequency accelerometer with sensitivity
f 0.2647 pC/ms−2 and with an upper frequency at 50 kHz, and
rüel and Kjær 4393 which is a standard accelerometer with

ensitivity of 0.2922 pC/ms−2 and with an upper frequency at
6.5 kHz. Table 1 shows the accelerometer types and their posi-
ion on the equipment. The accelerometers were attached to the
quipment by gluing studs that were glued onto the coater. The
ccelerometers were screwed on the gluing studs. Sensors 1–3
ere removed from the product container at the end of each coat-

ng process to allow the change of product container. For sensor
, two different positions were investigated. For sensor 4, which
as the only sensor placed on the expansion chamber and hence
ot demounted between batches, the distance is measured from
he bottom of the expansion chamber.

.2.4. Dissolution
Six samples each of 750 mg coated KCl crystals were sub-

ected to dissolution testing in an USP/Ph.Eur. basket apparatus
AT-7, Sotax, Switzerland) using 100 rpm, 900 ml of deionised
ater (Milli-Q water) at 37 ◦C. The removed amount of dis-

olution medium, 10 ml, was corrected for in the calculations.
hirteen hour dissolution profile was measured at 0.5, 1, 3, 6,
, 10, 12 and 13 h. The amount of dissolved potassium chloride
as analysed by Flame Atomic Absorption Spectrophotometer

FAAS 3300, Perkin-Elmer, USA) using a potassium selective
lectrode.

.2.5. Theoretical amount of film applied
The amount of film applied was estimated by the loss of

eight of the coating solution tank and the concentration of the
oating solution.

.2.6. Data analysis
The signals from the accelerometers were preamplified by

Brüel and Kjaer 2647 charge to Deltatron converter, there-
fter conditioned using a Brüel and Kjaer NEXUS Conditioning
mplifier before being digitised by an ADC (National Instru-
ents DAQ Pad 6070E). Data from the accelerometers was

onverted from analogue to digital signal. The acceleration (arbi-

rary scale) was then converted from the time domain into the
requency domain by means of the fast Fourier transform (FFT)
lgorithm giving power spectrum density (PSD) spectra in the
ange from 50 Hz to 25 kHz. Applying a Welch window (512

3

p

of Pharmaceutics 332 (2007) 90–97

oints) PSD was calculated using 20 segments with 50% overlap.
ach channel was digitised into 12 bit with a successive approx-

mation ADC at 50 ksamples/s. Because the PCA/PLS methods
re used to analyse the PSD one does not require the same sen-
itivity throughout the spectrum. Hence, it is safe to use the full
SD spectrum, also outside the range specified by the manufac-

urer. This preliminary data treatment was performed with Data
nterpretation and Model Management System (DIMMS) from
he Danish Technological Institute. Multivariate data analysis
as performed on the frequency spectra and the reference analy-

is using the software The Unscrambler Version 8.0 from Camo.

.2.7. Multivariate data analysis
Principal component analysis (PCA) was developed based on

he PAE data for each sensor. Variables 6–512 (300 Hz–25 kHz)
ere used, whereas variables 1–5 (50–250 Hz) incorporated
ackground noise generated by mechanical vibrations such as
lowers and compressors used in fluidised beds and from elec-
ricity. These variables where excluded from the models. For the
CA the PSD spectra was pre-processed by means of moving
verage in the time direction, average of 11 spectra (correspond-
ng to 5 min), to reduce the effect of noise inside the data and to
ase the interpretation of models.

The PLS regressions, using multivariate PLS calibration,
ere established to describe the relationship between the PAE
ata and the physical reference data on applied coat and release.
re-processing of data was performed according to the same
onditions as used for conducting the PCA. For the X-space,
requency spectra from an interval of 10 min close to the refer-
nce sample, and for the Y-space, the percentage dissolved at
he 6th hour, from the 13 h dissolution profile or the estimated
mount of EC film applied were used.

A good model fit does not necessarily mean that the model
ill be optimal for the future predictions. To assure this, the
odel needs to be validated with new data from new batch

rocesses and the model which gives the highest correlation
oefficient and lowest RMSEP value is considered to have the
est prediction capability. The optimal validation is an indepen-
ent test set, but this is very difficult with limited number of data.
he most used validation in that situation is segmented cross-
alidation. The data are split into a number of segments. Each
egment is validated as an independent test set based on a cal-
bration developed on the rest of the segments. The calibration
s validated based on all the segments acting as independent test
et. The general cross-validation used in the data analysis was 20
egments having all measurements referring to one sample in the
ame segment. Furthermore, all four batches were represented
n each segment. The best calibrations were tested for stability
n general and for batch-to-batch stability particularly with a
ross-validation with only four segments, one for each batch.

. Results
.1. Physical reference data

Table 2 summarises the reference data, i.e. the average
ercentage of potassium chloride released after 6 h, and the
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Table 2
Physical reference data

Sample Batch A1 Batch A2 Batch B1 Batch B2

Release at 6 h
(%)

Film amount
(%)

Release at 6 h
(%)

Film amount
(%)

Release at 6 h
(%)

Film amount
(%)

Release at 6 h
(%)

Film amount
(%)

1 78.6 0.6 79.5 0.6 80.5 0.6 82.8 0.6
2 67.8 1.3 76.3 1.3 72.6 1.3 66.7 1.1
3 58.6 1.9 72.4 1.9 66.5 1.9 65.7 1.8
4 62.7 2.6 62.9 2.5 60.3 2.5 66.1 2.4
5 58.4 3.2 54.8 3.1 49.8 3.1 52.6 3.1
6 44.0 3.8 53.6 3.6 42.6 3.8 52.2 3.7
7 46.0 4.4 49.6 4.3 38.2 4.4 50.0 4.3
8 39.2 5.0 41.4 5.0 54.5 5.0 38.7 5.0

35.8 5.6 36.0 5.6
1 37.0 6.0 33.4 6.0

P applied in terms of (w/w%) of potassium chloride.
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9 34.6 5.6 37.6 5.5
0 31.0 6.0 37.6 6.0

ercentage release of potassium chloride at 6 h and the estimated amount of film

stimated amount of film applied, here expressed as the
ercentage of the amount of the potassium chloride.

.2. Acoustic data

The PLS regression method was chosen as a more appropriate
echnique for evaluation of the acquired raw PAE data than the
rincipal component regression (PCR) method, to investigate the
bility of variables to act as predictors of the responses given
n Table 2. PLS focuses on extracting the part of information
rom the X-matrix that is relevant to Y, maximising covariance
etween the X and Y, whereas in case of PCR nothing guarantees
hat the extracted information from the X-matrix is relevant to
. Tables and graphical plots with values for PLS models are
resented in Tables 3 and 4 and in Figs. 1 and 2. Characteristics
f acoustic calibration models are presented in Table 5.

Fig. 3 shows score plots for principal component 1 (PC1)
nd PC2 based on smoothened data obtained by sensors 1 and
. Scores line plots of PC1 derived from sensors 1 and 4 for the
our batches from the start to the end of the process are shown

n Fig. 4.

Raw PAE data from sensor 1 throughout the four microen-
apsulation processes are shown in Fig. 5, one plot for each
atch.

4

r

able 3
LS models and cross-validated PLS models for release

odel Sensor

LS–model 1, 20 segments 1
2
3
4

LS–model 2, 20 segments 1
2
3
4

LS–model 1, cross-validated, 4 segments 1
2
3
4

ig. 1. PLS model, for release of KCl, developed for sensor 4 (ideal and best
tted line).

. Discussion
.1. Models for release

The data in Table 2 show that the release of potassium chlo-
ide did not follow the expected order when compared to the

Correlation coefficient RMSEP PC

0.90 6.70 6
0.82 8.67 5
0.81 9.03 7
0.90 6.34 4

0.91 6.40 6
0.82 8.66 5
0.83 8.63 7
0.92 5.84 4

0.20 16.45 1
0.69 11.09 9
0.71 10.75 5
0.89 6.83 4
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Table 4
PLS models and cross-validated PLS models for the amount of film applied

Model Sensor Correlation coefficient RMSEP PC

PLS–model 1, 20 segments 1 0.93 0.64 6
2 0.87 0.88 5
3 0.87 0.87 9
4 0.92 0.68 4

PLS–model 2, 20 segments 3 0.88 0.84 6
4 0.95 0.52 4

PLS–model 1, cross-validated 4 segments 1 0.27 1.86 1
2 0.70 1.25 9
3 0.77 1.13 4
4 0.90 0.77 3

Table 5
Characteristics of acoustic calibration models

Reference data Range (%) RMSEP

Percentage Percentage of range

Release of potassium chloride 31.0–82.8
Estimated amount of film applied 0.6–6.0

F
s

a
a
p
r
i
a
m

r
p
c
m
d
s
0

ig. 2. PLS model, for the estimated amounts of film applied, developed for
ensor 4 (ideal and best fitted line).

d
(

o

Fig. 3. Scores plot for PC1 and PC2, based on smoothed AE d
5.84 11.3
0.52 9.6

pplied amount of film. The disorganised fluidization pattern in
top spray coater combined with the difficulty in drawing sam-
les being representative for the entire batch is the most likely
eason. Indeed the top spray coater was chosen for the present
nvestigation as it was realised that this situation might occur
nd hence be a challenge to the capability of the PAE-based
onitoring.
Table 3 presents the PLS models for prediction of the 6 h

elease and the cross-validated PLS model for the release. It was
ossible to establish a PLS regression model for the potassium
hloride release having a correlation coefficient of approxi-
ately 0.9 and a RMSEP value of 6% (31–82.8%) from the

ata generated by sensors 1 and 4. The calibration models for
ensor 4 provide the best correlations and the lowest RMSEP,
.92 and 5.84% (31–82.8%) respectively. A plot of the predicted

issolution rate by PLS model 2 for sensor 4 against the actual
measured) values is presented in Fig. 1.

Also the data generated by sensors 2 and 3 gave RMSEP
f reasonable value, around 9% (31–82.8%), the correlation

ata from sensor 1 (left hand) and sensor 4 (right hand).
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Fig. 4. Scores line plot for PC1 for four batch processes from the start to t

oefficient obtained was not of satisfactory level, only around
.8, as may be seen from Table 3, indicating that sensors 2 and
having an upper frequency of 16.5 kHz did not suffice for
onitoring the coating process, whereas sensors with upper

requency at 50 kHz were applicable.
Table 3 includes the cross-validated PLS models that where

ested for stability in general and for batch to batch stability using
nly four segments, one for each batch. The four segment cross-
alidation of data generated by sensor 1 showed poor correlation
ndicating that the model is unstable because of batch to batch
ariation. Probably because the accelerometers were mounted

n the product container and demounted between the batches.

Although the PCA indicated that signals from sensor 4 con-
ain more noise, it resulted in the most stable cross-validated
egression. PLS model 1 tested for batch to batch stability had a

e
w
(
m

Fig. 5. Raw passive acoustic emission (PAE) data
d of the process, data from sensor 1 (left hand) and sensor 4 (right hand).

orrelation coefficient of 0.89 and a cross-validated RMSEP of
.83% (31–82.8%) (Table 3).

.2. Models for the amount of film applied

Table 4 gives the results for the PLS calibration models and
or cross-validated PLS models. Good linear correlations with
cceptable RMSEP values were obtained. It was possible to
evelop PLS regression models with correlation coefficients of
pproximately 0.9 and RMSEP values of 0.6% (0.6–6%) based
n data from sensors 1 and 4. As seen in Table 4, the data gen-

rated by sensor 4 again gave the best PLS regression model
ith an correlation coefficient of 0.95 and RMSEP of 0.52%

0.6–6%) for model 2. Fig. 2 shows the correlation between
easured and predicted data, based on PLS model 2 for sen-

obtained by sensor 1 for the four batches.
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or 4. The correlation coefficient was 0.95 and RMSEP 0.52%
0.6–6%).

The models were tested for batch to batch stability using the
ame cross-validation method as for PLS regressions on dissolu-
ion. The results showed the same tendency. Data from sensor 4
ave the most stable model with lowest values for batch to batch
ariation, 0.9, and highest prediction power, 0.77% (0.6–6%).
ata from sensor 1 showed a high inter-batch variation.

.3. Positioning of sensors

Cross-validated PLS models resulted in low predictive power
or sensor 1, even though the calibrated models gave satisfac-
orily high correlation coefficient and acceptable RMSEP for
ensors 1 and 4. A closer look at the PCA data revealed the most
ikely causes for that.

PC1 was found to explain most of the variance inside the data
or all sensors; data are not reported. Fig. 3 presents score plots
f PC1 and PC2 for sensors 1 and 4 derived from PCA based on
oving average in the time direction. The development in the

cores value for PC1 and PC2 from the start to the end of the
atch process is clearly seen. The graph shows clustering of the
core values according to the actual batch for sensor 1. Scores
lot for sensor 4 does not reveal distinct grouping of different
atches.

Fig. 4 shows a development in the scores value for PC1 from
he start to the end of the batch processes for all four batches,
or sensors 1 and 4. The shift in data from batch to batch can be
een, what is more pronounced for sensor 1 than for sensor 4.
he offset of the scores value from batch to batch were minor

or sensor 4, probably because it was kept in the same position
or all four batches in contrast to sensor 1 what was reattached
etween the batch processes.

Sensor 4 generated weaker signals and the impact of noise
as therefore higher. This was likely due to its placement on

he expansion chamber where fewer crystals hit the chamber
all and it is separated from the product container by a sili-

one membrane. Still trends in development of AE data could
e recognized.

Halstensen and Esbensen (2005) referred to the problem of
ositioning the sensors to be able to gain most of the information
ut of the process. During this preliminary study it was seen that
he positioning of sensors was not as important as considered
reviously but the run repeatability was affected by variability
f accelerometers attachment. In production scenario a welded
tud would be preferred.

Inter-batch variation is mainly explained by PC2, dealing
ith around 7–9% of variation inside the data. This variance may
e due to the two different product containers used. Plots of PAE
Fig. 5) gave comparable features for each product container, for
atches A1 and A2 and for batches B1 and B2 that corresponds
o the different product containers, c.f. Table 1. This indicates
hat in next step, when more data from supplementary batch

rocesses will be available, at least two models has to be built up,
ne for each product container. This is necessary for avoiding
he batch to batch variation caused by using different product
ontainers.

B

of Pharmaceutics 332 (2007) 90–97

. Conclusions

Despite the fact that the best PLS models achieved in the
tudy do not fully suffice for a reliable prediction of the two ref-
rence product characteristics investigated, there are reasons to
onsider monitoring of passive acoustic emission as a promising
echnique for the control of the coating process. The experimen-
al data sets given in Table 2 on percentage release at 6 h and
he amount of film applied indicate that the sampling procedure
as not optimal with regard to obtaining samples representative
f the entire batch. Furthermore, the amount of film applied was
stimated from the amount provided by the atomizer, not the
mount of film really deposited on the solid surfaces. Moreover,
he production scale top spray coater was chosen for the inves-
igation because it represents a kind of ‘worst case’ situation
ue to the less controlled coating zone. Thus, there is room for
mprovement of the models by implementing better techniques
or product characterisation, by inclusion of the entire release
rofile and by inclusion of a higher number of batch processes
han done in the present preliminary study. In future work, dif-
erent methods for pre-processing of PAE data should also be
nvestigated.

The investigation gave information on sensor types and their
ositioning on the coater. The best regressions were derived
rom data generated by sensors 1 and 4, both of which where
igh frequency and sensitivity accelerometers, with an upper
requency of 50 kHz. Sensor 1, placed on the product container,
evealed that the shift in data from batch to batch was high due
o the replacement of sensor 1 between the batch processes. This
esults in unstable predictive models for the reference charac-
eristics. The inter-batch variation for sensor 1 was caused by
ifferent product containers used. The data obtained by sensor
were not affected by the demounting between the batch pro-

esses and by the change of product container. That lead to the
ost stable regressions although the sensor generated weaker

ignals as it was mounted above the product and separated from
he product container by a silicone membrane.

Further development of using acoustics for process mon-
toring requires development in the sensor technology in the

eaning of wireless sensors and better signal interpretation.
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